107 research outputs found

    Learning Emotions: A Software Engine for Simulating Realistic Emotion in Artificial Agents

    Get PDF
    This paper outlines a software framework for the simulation of dynamic emotions in simulated agents. This framework acts as a domain-independent, black-box solution for giving actors in games or simulations realistic emotional reactions to events. The emotion management engine provided by the framework uses a modified Fuzzy Logic Adaptive Model of Emotions (FLAME) model, which lets it manage both appraisal of events in relation to an individual’s emotional state, and learning mechanisms through which an individual’s emotional responses to a particular event or object can change over time. In addition to the FLAME model, the engine draws on the design of the GAMYGDALA emotional engine for games. Evaluations of the model’s behavior over a set of test cases are performed, with a discussion of the model’s efficacy in different situations

    Women, know your limits: Cultural sexism in academia

    Get PDF
    Despite the considerable advances of the feminist movement across Western societies, in Universities women are less likely to be promoted, or paid as much as their male colleagues, or even get jobs in the first place. One way in which we can start to reflect on why this might be the case is through hearing the experiences of women academics themselves. Using feminist methodology, this article attempts to unpack and explore just some examples of ‘cultural sexism’ which characterise the working lives of many women in British academia.This article uses qualitative methods to describe and make sense of just some of those experiences. In so doing, the argument is also made that the activity of academia is profoundly gendered and this explicit acknowledgement may contribute to our understanding of the under-representation of women in senior positions

    Further empirical evidence for the non-linearity of the period-luminosity relations as seen in the Large Magellanic Cloud Cepheids

    Full text link
    (abridged) Recent studies, using OGLE data for LMC Cepheids in the optical, strongly suggest that the period-luminosity (PL) relation for the Large Magellanic Cloud (LMC) Cepheids shows a break or non-linearity at a period of 10 days. In this paper we apply statistical tests, the chi-square test and the F-test, to the Cepheid data from the MACHO project to test for a non-linearity of the V- and R-band PL relations at 10 days, and extend these tests to the near infrared (JHK-band) PL relations with 2MASS data. We correct the extinction for these data by applying an extinction map towards the LMC. The statistical test we use, the F-test, is able to take account of small numbers of data points and the nature of that data on either side of the period cut at 10 days. With our data, the results we obtained imply that the VRJH-band PL relations are non-linear around a period of 10 days, while the K-band PL relation is (marginally) consistent with a single-line regression. The choice of a period of 10 days, around which this non-linearity occurs, is consistent with the results obtained when this "break" period is estimated from the data. Long period Cepheids are supplemented from the literature to increase our sample size. The photometry of these long period Cepheids is compared with our data and no trend with period is found. Our main results remain unchanged when we supplement our dataset with these long period Cepheids. By examining our data at maximum light, we also suggest arguments why errors in reddening are unlikely to be responsible for our results. The non-linearity of the mean V-band PL relation as seen in both of the OGLE and MACHO data, using different extinction maps, suggests that this non-linearity is real.Comment: 18 pages, 10 tables, 7 figures. MNRAS accepte

    Imaging of the gravitational lens system PG 1115+080 with the Hubble Space Telescope

    Get PDF
    This paper is the first of a series presenting observations of gravitational lenses and lens candidates, taken with the Wide Field/Planetary Camera (WFPC) of the Hubble Space Telescope (HST). We have resolved the gravitational lens system PG 1115 + 080 into four point sources and a red, extended object that is presumably the lens galaxy; we present accurate relative intensities, colors, and positions of the four images, and lower accuracy intensity and position of the lens galaxy, all at the epoch 1991.2. Comparison with earlier data shows no compelling evidence for relative intensity variations between the QSO components having so far been observed. The new data agree with earlier conclusions that the system is rather simple, and can be produced by the single observed galaxy. The absence of asymmetry in the HST images implies that the emitting region of the quasar itself has an angular radius smaller than about 10 milliarcsec (100 pc for H_0=50, q_0=0.5)

    Ionization fronts and shocked flows - The structure of the Orion Nebula at 0".1

    Get PDF
    We present HST Wide-Field Camera images of a field in the Orion Nebula obtained in emission from [S II], HÎČ, and [O II]. The morphology of the [S II] emission is markedly different from the other lines. While HÎČ and [O II] are distributed fairly smoothly, [S II] is dominated by filamentary features with widths between 0".1 and 1" which sharply highlight ionization fronts moving into dense neutral material. These photoionization fronts act as probes of the structure of the cavity walls of this blister H II region. Their morphology indicates that while the surfaces into which they are moving are textured, subarcsecond clumps with high density contrast are uncommon. An exception is a bow shock-shaped ionization front seen along the face of a solar system-sized (0".6 = 270 AU) clump which is itself seen in extinction. The field contains a number of HH objects and related structures, many of which were previously recognized as such, but whose complex structure is revealed here by the resolution of HST. These include M42 HH 1, which is seen to be an intricate structure of knots and filaments with a head-tail morphology. M42 HH 2 shows structure from both the shocked cavity walls and the shocked atomic outflow. M42 HH 5-7 break into numerous condensations with an appearance reminiscent of HH 7-11. All objects with a bow shockshaped structure (i.e., M42 HH 1, 5, 7, and 10) show enhanced HÎČ emission at the apex of the structure where the shock should be strongest. M42 HH 8 and 9 may be HH objects viewed face-on, or alternatively condensations photoionized by a nearby A or B star. Emission from [S II] traces shocks at the walls of an ionized jet apparently emanating from a star in a dark cloud. This cloud seen in extinction is coincident with H_2 Peak 1, which we propose is on the near side of the nebula

    Stellar photometry with the Hubble Space Telescope Wide-field/Planetary camera - A progress report

    Get PDF
    We describe the prospects for the use of the Wide-Field/Planetary Camera (WFPC) for stellar photometry. The large halos of the point-spread function (PSF) resulting from spherical aberration and from spatial, temporal, and color variations of the PSF are the main limitations to accurate photometry. Degradations caused by crowding are exacerbated by the halos of the PSF. Here we attempt to quantify these effects and determine the current accuracy of stellar photometry with the WFPC. In realistic cases, the brighter stars in crowded fields have 0.09 mag errors; fainter stars have larger errors depending on the degree of crowding. We find that measuring Cepheids in Virgo Cluster galaxies is not currently possible without inordinate increases in exposure times

    Reduction of PG:1115+080 Images

    Get PDF
    The data are three exposures in PC6 through F785LP obtained on March 3, 1991. The exposure times are 120, 400, and 400 seconds. The data are reduced with the "standard" WFPC reduction scheme: A-to-D correction, DC bias subtraction, AC bias subtraction, dark current subtraction, preflash subtraction, and flat field normalization, using the best available calibration data. The exposures are combined into a weighted average normalized to 400 seconds exposure time, so one DN (data number) is about 17.25 electrons. At this step, cosmic rays are removed by intercomparison of the three images
    • 

    corecore